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This work proposes a model-reduction methodology that both preserves Lagrangian structure and

leads to computationally inexpensive models, even in the presence of high-order nonlinearities. We

focus on parameterized simple mechanical systems under Rayleigh damping and external forces, as

structural-dynamics models often fit this description. The proposed model-reduction methodology

directly approximates the quantities that define the problem’s Lagrangian structure: the Riemannian

metric, the potential-energy function, the dissipation function, and the external force. These approxi-

mations preserve salient properties (e.g., positive definiteness), behave similarly to the functions they

approximate, and ensure computational efficiency. Results applied to a simple parameterized truss-

structure problem demonstrate the importance of preserving Lagrangian structure and illustrate the

method’s ability to generate speedups while maintaining observed stability, in contrast with other

model-reduction techniques that do not preserve structure.

I. Introduction

Computational structural dynamics (CSD) tools have become indispensable in many industries due to
their ability to enhance the understanding of complex structural systems, reduce design costs, and improve
reliability. However, the large computational cost of high-fidelity structural-dynamics simulations can result
in simulation times on the order of weeks, even when high-performance computing resources are available. As
a result, high-fidelity CSD tools can be impractical for time-critical applications that demand the accuracy
provided by high-fidelity models. In particular, applications such as nondestructive evaluation for structural
health monitoring, embedded control, design optimization, and uncertainty quantification require highly
accurate results to be obtained in minutes or hours.

Model reduction methods present a promising approach for realizing this goal. These methods approxi-
mate the high-fidelity model by reducing the number of equations and unknowns describing it. To do so, they
employ a projection process: they compute fast ‘online’ solutions by searching in a low-dimensional space
that was computed a priori by expensive ‘offline’ computations. Thus, the reduced-order model used for
online computations is characterized by a low-dimensional dynamical system that is formed by a projection
process on the equations characterizing the high-fidelity model.

However, generating a reduced-order model that preserves the Lagrangian structure intrinsic to structural-
dynamics models is not a trivial task. Such structure is critical to preserve, as it leads to fundamental
properties such as energy conservation (in the absence of non-conservative forces), conservation of quantities
associated with symmetries in the system, and symplectic time-evolution maps. In fact, the class of structure-
preserving integrators (e.g., geometric integrators,1 variational integrators2) has been developed to ensure
that the solution to the full-order computational model associates with the time-evolution map of a (modified)
Lagrangian system.
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Lall et al.3 showed that performing a Galerkin projection on the Euler–Lagrange equation (as opposed
to the first-order state-space form) leads to a reduced-order model that preserves Lagrangian structure.
However, the computational cost of assembling the associated low-dimensional equations scales with the
dimension of the high-fidelity model. For this reason, this approach is efficient primarily for problems where
the low-dimensional operators can be assembled a priori ; this occurs only in the (very limited) case where
the operators 1) exhibit a linear or quadratic dependence on the state, and 2) can be decomposed a sum of
products of parameter-independent operators and parameter-dependent functions.

Several methods have been developed in the context of nonlinear-ODE model reduction that can reduce
the computational cost of assembling the low-dimensional equations. However, these methods destroy the
problem’s Lagrangian structure. Collocation approaches4,5 perform a Galerkin projection on only a small
subset of the full-order equations, thereby ‘throwing away’ most full-order equations. Although this method
works well for some nonlinear ODEs, it destroys Lagrangian structure as will be shown in Section III.B.1.
Empirical interpolation6–9 and least-squares-reconstruction methods10–12 compute a few entries of the non-
linear functions, then approximate the uncomputed entries by interpolation or least-squares regression with
an empirically derived basis. Galerkin projection is then performed with the approximated nonlinear func-
tion. Even though this approach has led to promising results for nonlinear ODEs without special structure,
this technique also destroys Lagrangian structure as explained in Section III.B.2.

The goal of this work is to devise a reduced-order model that is both efficient and preserves Lagrangian
structure. We focus particularly on structural-dynamics models described as simple mechanical systems
under Rayleigh damping and external forces. The methodology we propose constructs a reduced-order
model by directly approximating the quantities defining the problem’s Lagrangian structure:

• Configuration space. The configuration space of reduced dimension is derived in the usual fashion, e.g.,
proper orthogonal decomposition, modal decomposition.

• Riemannian metric. The Riemannian metric is defined by a low-dimensional symmetric-positive-definite
matrix. We approximate this low-dimensional matrix with a sampling-based method that preserves
positive definiteness (cf. Section IV.B).

• Potential-energy function. The potential energy function is approximated by employing the original
potential-energy function, but with the reduced basis replaced with a sparse matrix with many zero
rows. This sparse matrix is computed offline by minimizing the discrepancy in the potential-energy
gradient over training data.

• Dissipation function. Similar to the Riemannian metric, the dissipation function is defined by a
low-dimensional symmetric-positive-semidefinite matrix. We approximate this low-dimensional ma-
trix with the aforementioned sampling-based method; however, in this case we ensure that positive-
semidefiniteness is preserved (cf. Section IV.B)

• External force. The external force is derived from the Lagrange–D’Alembert principle applied with
variations in the configuration space. We approximate this by applying empirical interpolation/least-
squares reconstruction to the external force expressed in the original coordinates. As a result, the
external force appearing in the equations of motion for the reduced-order model can be derived by the
Lagrange–D’Alembert principle applied to the (modified) external force with variations restricted to
the reduced-order configuration space.

The remainder of the paper is organized as follows. Section II introduces the Lagrangian-mechanics
formulation. Section III outlines existing model-reduction techniques and highlights the need for an efficient,
structure-preserving method. Section IV describes the proposed method. Section V presents numerical
experiments applied to a conservative truss-structure system. Finally, Section VI concludes the paper.

II. Problem formulation

This work considers nonlinear mechanical systems, with a particular focus on parameterized structural-
dynamics models derived by a finite-element formulation. Such structural-dynamics models represent pa-
rameterized simple mechanical systems, which are defined by a (parameterized) triple (Q, g, V ):

• a differentiable configuration manifold Q,

• a parameterized Riemannian metric g : TQ× TQ×D → R+, where TQ denotes the tangent bundle of
Q and D ⊂ Rp denotes the parameter domain,
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• a parameterized potential-energy function V : Q×D → R.

The structural-dynamics models considered here are characterized by a Euclidean configuration space
Q = RN (the degrees of freedom in a finite-element model), a Riemannian metric defined as g : (v, w;µ) 7→
vTM (µ)w, and a potential-energy function that describes the strain energy in the model. Here, M (µ) ∈
SPD (N) denotes the mass matrix and SPD (N) denotes the set ofN×N symmetric positive-definite matrices.

The kinetic energy of simple mechanical systems is T (q̇;µ) = 1
2g(q̇, q̇;µ) = 1

2 q̇
TM (µ)q̇. The Lagrangian

can then be expressed as

L(q, q̇;µ) = T (q̇;µ)− V (q;µ) (1)

=
1

2
q̇TM (µ)q̇ − V (q;µ). (2)

Given the Lagrangian (2), the equations of motion for a simple mechanical system subject to non-conservativea

forces Fn (t, q, q̇;µ) can be derived from the forced Euler–Lagrange equation

d

dt
∇q̇L(q, q̇;µ)−∇qL(q, q̇;µ) = Fn (t, q, q̇;µ). (3)

In structural dynamics, the non-conservative forces often consist of a configuration-independent external
force (t, µ) 7→ f ext (t;µ) with f ext : [0,T] × D → RN and T denoting the final time, and a dissipative
force corresponding to Rayleigh viscous damping. This dissipative force derives from a positive-semidefinite
dissipation functionb

F (q̇;µ) ≡ 1

2
q̇TC (µ)q̇, (4)

where C (µ) ∈ SP (N) and SP (N) denotes the set of N ×N symmetric positive-semidefinite matrices. So,
we consider non-conservative forces of the form

Fn (t, q, q̇;µ) = f ext (t;µ)−∇q̇F (q̇;µ). (5)

Substituting (2), (4), and (5) into the Euler–Lagrange equation (3) leads to the familiar equations of motion
for structural dynamics

M (µ)q̈ + C (µ)q̇ +∇qV (q;µ) = f ext (t;µ) . (6)

Conservative mechanical systems (Fn (t, q, q̇;µ) = 0) exhibit important properties. For example, these
systems conserve energy and quantities associated with symmetry, and their time-evolution maps are sym-
plectic. Because these properties are important characteristics of the mechanical systems, it is desirable for
the numerical-integration schemes to preserve these properties when applied to such systems. As previously
mentioned, the class of structure-preserving integrators has been developed for this purpose. This class of
integrators is derived to ensure intrinsic properties such as energy conservation, momentum conservation,
and symplecticity are preserved by in the numerical solution.1,2

For this reason, we aim to develop a reduced-order model that preserves the structure of the mechanical
system, yet is computationally inexpensive to simulate. This will ensure that the reduced-order model
preserves these characteristic properties. Further, the equations of motion for these models can be solved with
a structure-preserving integrator; this will ensure that the numerical solution computed with the reduced-
order model will also preserve these properties. In summary, the properties of the model we seek to preserve
are:

1. a configuration space,

2. a parameterized Riemannian metric defined on the tangent bundle to the configuration space,

3. a parameterized potential-energy function,

4. a parameterized positive-semidefinite dissipation function, and

5. an external force derived from the Lagrange–D’Alembert principle applied with variations in the con-
figuration space.

Properties 1–3 constitute the parameterized triple that ensures the model describes a simple mechanical
system; Properties 4–5 characterize the non-conservative forces.

aConservative forces can be handled by directly including them in the Lagrangian.
bNon-viscously damped systems can also often be derived by a positive-semidefinite dissipation function.13
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III. Existing model-reduction techniques

Model-reduction techniques seek to generate a low-dimensional model that is inexpensive to evaluate,
yet captures the essential features of the high-fidelity model. To do so, these methods first perform analyses
of the system at a set of training parameters Dsample ⊂ D during a computationally intensive ‘offline’ (i.e.,
training) stage. These analyses may include the integration of the equations of motion, modal analyses, etc.
Then, the data generated during these analyses are employed to define a configuration manifold of reduced
dimension Qr ⊂ Q, with dimQr = n � N . Once this low-dimensional configuration manifold is defined, it
is employed to generate a low-dimensional model that can be used to perform computationally inexpensive
analyses for any µ? ∈ D during the ‘online’ (i.e., deployed) stage.

When the configuration space is Euclidean (as is the case for the models considered herein), the low-
dimensional configuration space can be expressed as Qr = q0 (µ) + Y, where Y ⊂ RN , dimY = n. The
trial subspace is spanned by a basis such that Y = range(Φ) with Φ ∈ RN×n∗ . Here, Rn×m∗ denotes the
noncompact Stiefel manifold: the set of full-rank n×m matrices. This leads to the following expression for
the generalized coordinates and their derivatives:

q = q0 (µ) + Φqr (7)

q̇ = Φq̇r (8)

q̈ = Φq̈r, (9)

where qr ∈ Rn. Thus, the low-dimensional configuration space can be described in terms of low-dimensional
generalized coordinates qr ∈ Qr ≡ Rn or in terms of original coordinates by the definition

Qr ≡ {q0 (µ) + Φqr | qr ∈ Qr}. (10)

The basis (in matrix form) Φ can be determined by a variety of techniques, including proper orthogonal
decomposition and modal decomposition.

III.A. Galerkin projection

Model-reduction methods based on Galerkin projection preserve the problem’s structure. As was pointed
out by Lall et al.,3 the Galerkin projection must to be carried out on the Euler–Lagrange equation (3)—not
the first-order state-space form ẋ(t) = f(x(t))—in order to preserve Lagrangian structure.

Following the approach of Lall et al.,3 Galerkin-projection-based methods substitute Eqs. (7)–(9) directly
into Lagrangian (and dissipation function) and derive the equations of motion in using a set of generalized
coordinates that has lower dimension. In this way, the resulting model has an identical structure to the
original problem.

For structural dynamics, this amounts to defining the Lagrangian as

Lr(qr, q̇r;µ) ≡ L(q0 (µ) + Φqr,Φq̇r;µ) (11)

=
1

2
q̇r
TΦTM (µ)Φq̇r − V (q0 (µ) + Φqr;µ) (12)

and the dissipation function as

Fr (q̇r;µ) ≡ F (Φq̇r;µ) (13)

=
1

2
q̇r
TΦTC (µ)Φq̇r. (14)

The external force, which is derived based on the Lagrange–D’Alembert variational principle, is transformed
by relation (7) into

f ext
r = ΦT f ext. (15)

Following Section II, the forced Euler–Lagrange equation applied to the Lagrangian Lr, the dissipation
function Fr, and the external force f ext

r leads to the reduced-order equations of motion

d

dt
∇q̇rLr(qr, q̇r;µ)−∇qrLr(qr, q̇r;µ) +∇q̇rFr (q̇r;µ) = f ext

r . (16)
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This can be rewritten as

ΦTM (µ)Φq̈r + ΦTC (µ)Φq̇r + ΦT∇qV (q0 (µ) + Φqr;µ) = ΦT f ext (t;µ) . (17)

Note that Eq. (17) is equivalent to applying Galerkin projection to the original forced Euler–Lagrange
equation (6).

Thus, the reduced-order model preserves the problem structure because it preserves all five properties
described in Section II:

1. a configuration space Qr = Rn, which relates to the original configuration space by Eq. (10),

2. a parameterized Riemannian metric gr : (vr, wr;µ) 7→ vTr ΦTM (µ)Φwr,

3. a parameterized potential-energy function Vr : (qr;µ) 7→ V (q0 (µ) + Φqr;µ),,

4. a parameterized positive-semidefinite dissipation function Fr : (q̇r;µ) 7→ 1
2 q̇r

TΦTC (µ)Φq̇r, and

5. an external force f ext
r derived from applying the Lagrange–D’Alembert principle to the original external

force f ext, but restricted to variations in the configuration space Qr.

III.A.1. Computational bottleneck

Although the equations of motion (17) are of small dimension n � N , it is computationally expensive to
solve them with a numerical-integration method. The reason is simple: computing the low-dimensional
components of (17) incur large-scale operations.

For example, consider computing ΦTM (µ)Φ for some µ = µ? during the online stage. If the mass
matrix can be expressed as an affine function of the parameters M (µ) =

∑
i αi(µ)Mi with αi : D → R

and Mi ∈ RN×N , then the products ΦTMiΦ can be assembled during the offline stage, and ΦTM (µ)Φ =∑
i αi(µ)

[
ΦTMiΦ

]
can be computed in O(n2) floating-point operations (flops) during the online stage.14,15

However, this scenario is quite limiting and is not generally applicable.
In the general setting, the steps required to compute ΦTM (µ)Φ for each µ? ∈ D are:

i compute M (µ?), which incurs O(Nω) floating-point operations (flops), where ω denotes the average
number of nonzeros per row of the sparse matrix M (µ?). Note that ω � N for finite-element models
constructed using basis functions with compact support,

ii compute the product M (µ?)Φ, which incurs O(Nωn) flops, and

iii compute the product ΦT (M (µ?)Φ), which incurs O(Nn2) flops.

Thus, the cost scales with N : the large dimension of the original configuration manifold. The same analysis
holds for computing the product ΦTC (µ?)Φ.

If the potential energy V exhibits a nonlinear dependence on coordinates qr of polynomial degree greater
than two, the situation worsens. In this case, the product ΦTV (q0 (µ) + Φqr;µ

?) must be recomputed
whenever qr changes; this must be done for each Newton step (within each time step) if an implicit numerical
integrator is employed to solve (17). Similarly, f ext (t;µ?) and subsequently ΦT f ext (t;µ?) must be computed
at each time step.

Thus, for systems with nonaffine parameter dependence or high-order nonlinearities, a dimension reduc-
tion is insufficient to generate models with computational complexity independent of N . In fact, such models
are often more expensive to simulate than the original model for this reason.

III.B. Galerkin projection with function sampling

Several techniques have been developed to mitigate the computational bottleneck described in Section III.A.1.
These ‘function sampling’ methods select only a few entries of the vector-valued functions exhibiting non-
affine parameter dependence or nonlinear dependence on coordinates q; other entries are ignored or are
effectively set to zero. Such methods have been successfully applied to ODEs without special structure.
However, when applied to mechanical systems described by Lagrangian mechanics, these techniques destroy
the problem’s Lagrangian structure.
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III.B.1. Collocation

Collocation approaches4,5 compute only a subset of the full-order equations (6) before performing the
Galerkin projection. That is, the reduced-order equations of motion (17) are approximated by

ΦTZTZM (µ)Φq̈r + ΦTZTZC (µ)Φq̇r + ΦTZTZ∇qV (q0 (µ) + Φqr;µ) = ΦTZTZf ext (t;µ) . (18)

Here, the ‘sampling matrix’ Z ∈ RnZ×N consists of nZ � N selected rows of the identity matrix, where
N ≥ nZ ≥ n.

Computing each component of (18) is computationally inexpensive when the matrices M (µ), C (µ), and
∇qqV (q0 (µ) + Φqr;µ) are sparse (i.e., ω � N). For example, the steps required to compute the first term
in (18) are:

i compute ZM (µ?), which incurs O(nZω) floating-point operations (flops),

ii compute the product (ZM (µ?)) Φ, which incurs O(nZωn) flops, and

iii compute the product ΦTZT (ZM (µ?)Φ), which incurs O(nZn
2) flops.

Thus, the cost scales with nZ � N : the small number of rows in the sampling matrix Z. The same operation-
count analysis holds for computing the other terms. However, this cost-reduction approach destroys the
problem’s structure, as it does not preserve the following properties described in Section II:

2. The reduced mass matrix ΦTZTZM (µ)Φ is not symmetric, so it does not define a metric.

3. The term ΦTZTZ∇qqV (q0 (µ)+Φqr;µ)Φ is not symmetric, so it does not derive from a potential-energy
function.

4. The reduced damping matrix ΦTZTZC (µ)Φ is not symmetric, so it does not derive from a dissipation
function.

Note that Property 1 is trivially satisfied, as the configuration space can be described as Qr = Rn and relates
to the original configuration space by Eq. (10). Further, Property 5 is satisfied, because the non-conservative
forces can be derived by applying the Lagrange–D’Alembert variational principle to a (modified) external
force ZTZf ext (t;µ), but restricted to variations in the (true) configuration space Qr.

III.B.2. Empirical interpolation/least-squares reconstruction

Methods based on empirical interpolation6–9 or least-squares reconstruction10,11 approximate nonlinear func-
tions f(q;µ) that appear as ΦT f(q;µ) in the reduced-order equations of motion. In the current case, four
nonlinear functions of the form f(q;µ) are approximated: M (µ)Φq̈r, C (µ)Φq̈r, ∇qV (q0 (µ) + Φqr;µ), and
f ext (t;µ).

During the offline stage, these methods construct a basis Φf ∈ RN×nf with nf ≤ nZ to approximate the
function f . The basis Φf can be computed empirically via proper orthogonal decomposition (POD). This
consists of two steps: 1) collect a set of ‘snapshots’ Xf = {f(q;µ) | µ ∈ Dsample, t ∈ Tsample(µ)}, where
Tsample(µ) ⊂ [0,T] are the time steps taken by the numerical-integration method for the training simulation
with parameters µ, and 2) compute Φf by Algorithm 1 of Appendix VI.A using Xf as the input. During the

online stage, these methods compute an approximation f̃(q;µ) by computing f̂ as the solution to the linear
least-squares problem (19)

minimize
x∈Rnf

‖Zf(q;µ)− ZΦfx‖2 (19)

and then computing f̃(q;µ) via

f̃(q;µ) = Φf f̂ = Φf [ZΦf ]+Zf(q;µ). (20)

Here, a superscript + denotes the Moore–Penrose pseudoinverse. Notice that when nf = nZ , the least-
squares residual is zero (assuming the ZΦf has full column rank) and so the above procedure corresponds
to interpolation in this case.

This approximation technique leads to computational-cost savings during the online stage, as the com-
putational cost of evaluating the terms ΦT f̃i, i = 1, . . . , 4 that compose the equations of motion scales with
nZ � N . Unfortunately, this approximation method also destroys the problem’s structure, as it violates the
following properties:
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2. The reduced mass matrix ΦTΦf1 [ZΦf1 ]
+
ZM (µ)Φ is not symmetric, so it does not define a metric.

4. The reduced damping matrix ΦTΦf2 [ZΦf2 ]
+
ZC (µ)Φ is not symmetric, so it does not derive from a

dissipation function.

3. The term ΦTΦf3 [ZΦf3 ]
+
Z∇qqV (q0 (µ) + Φqr;µ)Φ is not symmetric, so it does not derive from a

potential-energy function.

Again, Property 1 is satisfied. Property 5 is also satisfied, because the non-conservative external force
can be derived by the Lagrange–D’Alembert principle applied to the (modified) external force f̃ ext (t;µ) =
Φf4 [ZΦf4 ]

+
Zf ext (t;µ) with variations restricted to the (true) configuration space Qr.

IV. Efficient, structure-preserving model reduction

The main idea of the proposed approach is to directly approximate the quantities defining the structure of
the Galerkin-projection reduced-order model. For the structural-dynamics models considered herein, these
quantities are enumerated at the end of Section III.A: the Riemannian metric gr, the potential-energy
function Vr, the semidefinite dissipation function Fr, and the external force f ext

r . These approximations
should 1) preserve salient properties, 2) behave similarly to the functions they approximate, and 3) lead
to computationally inexpensive reduced-order-model simulations. Note that we must approximate only
quantities exhibiting non-affine parameter dependence or scalar quantities with nonlinearities in the q of
polynomial degree exceeding two.

To this end, we propose a model defined by

1. the configuration space Qr = Rn, which relates to the original configuration space by Eq. (10),

2. an approximated Riemannian metric g̃r ≈ gr,
3. an approximated potential-energy function Ṽr ≈ Vr,
4. an approximated positive-semidefinite dissipation function F̃r ≈ Fr, and

5. an external force derived from applying the Lagrange–D’Alembert principle to an approximated force
f̃ ext ≈ f ext, but restricted to variations in the configuration space Qr. Thus, the form of the approxi-
mated external force is

f̃ ext
r (t;µ) ≡ ΦT f̃ ext (t;µ) . (21)

After these approximations are defined, the equations of motion can be derived from the forced Euler–
Lagrange equation using these approximated quantities.

The next sections describe the proposed approximations in detail. We note that the proposed approx-
imation methods are not the only possibilities; other techniques that preserve salient properties may be
derived.

IV.A. External-force approximation f̃ ext
r

Because the external-force approximation is of the form described by Eq. (21), the task of generating this
approximation can be reduced to approximating the function f ext (t;µ). One way to accomplish this is the
empirical interpolation/least-squares reconstruction approach described in Section III.B.2. Applying this
technique to the external force yields

f̃ ext = Φf [ZΦf ]
+
Zf ext (t;µ) . (22)

Here, Φf ∈ RN×nf is a basis for the external force. Substituting (22) into (21) yields the expression for the
approximated external force:

f̃ ext
r = ΦTΦf [ZΦf ]

+
Zf ext (t;µ) . (23)

IV.A.1. Offline/online decomposition

The offline stage requires the following steps to implement this approximation:

1. Collect snapshots of the external force: Xf ≡ {f ext (t;µ) | µ ∈ Dsample, t ∈ Tsample(µ)}
2. Compute POD basis Φf using snapshots Xf .
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3. Determine the sampling matrix Z.

4. Compute the low-dimensional matrix ΦTΦf [ZΦf ]
+

.

The online stage consists of the following:

1. Compute nZ � N entries of the external force Zf ext (t;µ).

2. Compute the low-dimensional matrix–vector product
[
ΦTΦf [ZΦf ]

+
]

[Zf ext (t;µ)].

IV.B. Riemannian-metric and dissipation-function approximations g̃r and F̃r
Each of the terms gr and Fr is quadratic, and is therefore defined by a low-dimensional matrix ΦTA (µ)Φ ∈
Rn×n, where A = M (positive definite) or A = C (positive semidefinite). To this end, we propose sampling-
based approximations that directly approximate these low-dimensional matrices in a manner that preserves
symmetry and positive (semi)definiteness:

g̃r(v1, v2;µ) =vT1 hSPD (M (µ),M) v2 (24)

F̃r(q̇r;µ) =
1

2
q̇r
ThSP (C (µ), C) q̇r. (25)

Here, hSPD : SPD (N)× (S (N))
nA → SPD (n) and hSP : SP (N)× (S (N))

nA → SP (n), where S(p) denotes
the set of p× p symmetric matrices. These functions approximate the low-dimensional matrix ΦTA (µ)Φ by
the same functional form:

hSPD (A,A) =

nA∑
i=1

ΦTAiΦξiSPD(A,A) (26)

hSP (A,A) =

nA∑
i=1

ΦTAiΦξiSP(A,A). (27)

Here, A ≡ {Ai}nA
i=1 with Ai ∈ S(N), i = 1, . . . , nA represents a basis for the matrix A.

The next sections describe how the functions hSPD and hSP are defined, i.e., the method for computing
the coefficients ξSPD ≡ (ξ1, . . . , ξnA

), ξSP ≡ (ξ1, . . . , ξnA
), and matrix basis A.

IV.B.1. Matrix basis

To obtain the matrix basis A, we propose applying a vectorized POD method. This approach allows A
to be considered a set of ‘principal matrices’ that optimally represent A(µ) ∈ S(N) over a set of training
parameters µ ∈ Dsample.c The steps for this method are:

1. Collect ‘snapshots’ of the matrices: XA ≡ {A (µ) | µ ∈ Dsample}.
2. Vectorize the snapshots:

Xv(A) ≡ {v (A) | A ∈ XA}, (28)

where the function v : RN×N → RN2

vectorizes a matrix.

3. Compute a nA-dimensional POD basis of the vectorized snapshots Φ
(
nA,Xv(A)

)
, where nA ≤ card(XA)

(cf. Algorithm 1 in Appendix VI.A).

4. Transform these POD basis vectors into their matrix form:

A = {v−1
(
φiA
)
}nA
i=1, (29)

where Φ
(
nA,Xv(A)

)
≡
[
φ1
A · · · φ

nA

A

]
.

Note that every element of A is guaranteed to be symmetric, as it is a linear combination of symmetric
matrices A(µ), µ ∈ Dsample.

cThese matrices are optimal in the sense that they minimize the average projection error (as measured in the Frobenius
norm) of the matrix snapshots.
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IV.B.2. Coefficients

The scalar coefficients ξSPD (resp. ξSP) are determined by seeking to match the matrix A and the linear

combination
nA∑
i=1

AiξiSPD (resp.
nA∑
i=1

AiξiSP) at a set of ‘sample elements’ E ≡ {(im, jm)}ne
m=1 with ne � N .

That is, ξSPD is the solution to (30) with ε a numerical threshold for defining a full-rank matrix; ξSP is the
solution to (30) with ε = 0:

minimize
x∈RnA

ne∑
m=1

(
Aim,jm −

nA∑
k=1

Akim,jmxk

)2

subject to

nA∑
k=1

ΦTAkΦxk ≥ ε.

(30)

This approach amounts to the gappy POD method10 applied to matrix data with the addition of a linear-
matrix-inequality constraint. The constraint ensures that the image of hSPD(A,A) is SPD (n) (resp. image
of hSP is SP (n)).

Problem (30) is characterized a quadratic objective and nonlinear constraints (the linear-matrix-inequality
constraint is effectively nonlinear in x). Appendix VI.B describes a method for solving it. Note that this
optimization problem must be solved online using the online-sampled data Aim,jm , (im, jm) ∈ E .

IV.B.3. Offline/online decomposition

The offline stage consists of the following operations. These steps should be carried out both for A = M and
A = C.

1. Compute the basis A using the vectorized POD approach described in Section IV.B.1.

2. Determine sample elements E .

3. Compute low-dimensional matrices ΦTAiΦ, i = 1, . . . , nA.

During the online stage, the following steps are required for A = M and A = C:

1. Compute Aim,jm with (im, jm) ∈ E .

2. Solve the small-scale optimization problem (30) for ξSPD or ξSP.

3. Assemble the low-dimensional matrix hSPD (A,A) or hSP (A,A) by Eq. (26) or (27).

IV.C. Potential-energy-function approximation Ṽr

When the potential-energy function Vr is quadratic in coordinates qr, the approximation technique de-
scribed in the previous section can be used. However, when it exhibits a higher-order nonlinearity, an-
other method is required. When the potential energy is defined by the integral over a domain (i.e.,
V (q;µ) =

∫
Ω
V(X, q;µ)dΩX

), a sparse cubature method16 can be used to achieve computational efficiency.
In the absence of such structure, a different method is needed.

In order to approximate such a potential-energy function in a way that 1) employs the original potential-
energy function V , and 2) leads to computationally inexpensive terms in the equations of motion, we propose
‘injecting sparseness’ into the trial basis. To accomplish this, we replace Φ with a sparse matrix Ψ ∈ RN×n
with only nZ � N rows containing nonzero entries:

Ṽr(qr;µ) =V (q0 (µ) + Ψqr;µ). (31)

Note that this sparse matrix may be defined as Ψ ≡ ZTΨ, with Z ∈ RnZ×N the sampling matrix.
To compute the sparse basis Ψ, we first note that only the gradient∇qrVr(qr;µ) ≡ ΦT∇qV (q0 (µ)+Φqr;µ)

appears in the equations of motion (17). Thus, we aim to compute Ψ such that ∇qr Ṽr ≈ ∇qrVr. To this
end, we propose computing Ψ as the solution to (32):

minimize
X∈RnZ×n

∗

∑
µ∈Dsample

J∑
j=1

∥∥XTZ∇qV (q0 (µ) + ZTXqr
j ;µ)− ΦT∇qV (q0 (µ) + Φqr

j ;µ)
∥∥2

2
. (32)
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The variables qr
j , j = 1, . . . , J denote different values of qr, which may be encountered at different time

steps and Newton iterations during training simulations.
Because the noncompact Stiefel manifold is an open set, problem (32) can be solved by first computing

a solution in RnZ×n and subsequently projecting this solution onto RnZ×n
∗ .

IV.C.1. Offline/online decomposition

To implement this approximation, the following steps are required offline:

1. Collect snapshots of the generalized state and potential-energy gradient:

XV ≡ {
(
qr
j (µ) ,ΦT∇qV

(
q0 (µ) + Φqr

j ;µ
))
| µ ∈ Dsample, j = 1, . . . , J}. (33)

2. Determine the sampling matrix Z.

3. Solve (32) for Ψ using XV , and set Ψ = ZTΨ.

The online stage simply requires employing Ṽr in lieu of Vr.

IV.D. Equations of motion and computational efficiency

The equations of motion can be derived by applying the forced Euler–Lagrange equation to the approximated
quantities:

d

dt
∇q̇r L̃r(qr, q̇r;µ)−∇qr L̃r(qr, q̇r;µ) +∇q̇r F̃r (q̇r;µ) = f̃ ext

r , (34)

where the approximated Lagrangian is defined as

L̃r(qr, q̇r;µ) ≡ 1

2
g̃r(q̇r, q̇r;µ)− Ṽr(qr;µ). (35)

Eq. (34) can be written as

hSPD (M (µ),M) q̈r + hSP (C (µ), C) q̇r + ΨT∇qV (q0 (µ) + Ψqr;µ) = f̃ ext
r . (36)

The cost of computing the components of the equations of motion for the proposed reduced-order model
is independent of N . For this reason, we expect the reduced-order model to be computationally inexpensive
to use in the online stage. To summarize, the online computations needed to compute each term of the
proposed reduced-order model are as follows:

• The forcing term requires 1) computing Zf ext (t;µ) ∈ RnZ , which necessitates computing only nZ � N
entries of the forcing vector, and 2) computing the low-dimensional matrix–vector product[

ΦTΦf [ZΦf ]
+
]
Zf ext (t;µ) ,

where the matrix ΦTΦf [ZΦf ]
+ ∈ Rn×nZ is computed in the offline stage.

• Computing hSPD (M (µ),M) and hSP (C (µ), C) require 1) computing only ne � N entries of the large-
scale matrices M (µ) and C (µ), respectively, and 2) solving the small-scale optimization problem (30).

• The potential-energy term requires 1) computing Z∇qV (q0 (µ) + Ψqr;µ), which necessitates computing
only nZ � N entries of potential-energy gradient, and 2) the low-dimensional matrix–vector product
ΨT (Z∇qV (q0 (µ) + Ψqr;µ)). Note that the first of these will be inexpensive if ∇qqV is sparse; this is
the case for finite-element models characterized by basis functions with compact support.

So, the proposed reduced-order model preserves the problem’s structure, and is computationally inex-
pensive to employ. The next section applies the method to a simple structural-dynamics example.

Remark. This work does not specify a method for selecting the sampling matrix Z or sample elements E . In
fact a different sampling matrix Z could be used for the external force and potential-energy function. Future
work will address this topic. The numerical experiments in the next section use the GNAT model-reduction
method’s approach for selecting the sample matrix.11

10 of 16

American Institute of Aeronautics and Astronautics



bay

1 + µ5

1 + µ4

0.5 + µ6

1

1 1

Monday, April 2, 12

Figure 1. Clamped-free parameterized truss structure problem

V. Numerical experiments

This example considers a conservative structural-dynamics system. That is, damping and external forces
are omitted (Fn (t, q, q̇;µ) = 0). As a result, the system is energy-conserving and has a symplectic time-
evolution map. Because our proposed reduced-order model preserves such structure, the reduced-order model
will also describe a conservative mechanical system. As previously discussed, structure-preserving integrators
can be applied to such problems to ensure these properties are conserved. To this end, we apply the midpoint
rule (a symplectic integrator) to solve the equations of motion.

Figure 1 depicts the parameterized clamped-free truss structure, where the arrow indicates the initial
vertical displacement. We consider a problem with 10 bays. The high-fidelity model is constructed by the
finite-element method. It consists of sixteen three-dimensional bar elements per bay with three degrees
of freedom per node; this results in 12 degrees of freedom per bay, which leads to 1.2 × 102 degrees of
freedom in the high-fidelity model. The bar elements model geometric nonlinearity, which results in a high-
order nonlinearity in the strain energy. Each bay has (unitless) depth of 1, with the cross-sectional area
determined by the parameterized geometry. Table 1 summarizes the effect of the p = 6 parameters on the
model; here, µi ∈ [−1, 1], i = 1, . . . , 6.

density
bar cross-sectional modulus of base base initial

area elasticity width height tip displacement

1 + µ1 1 + µ2 1 + µ3 1 + µ4 1 + µ5 0.5 + µ6

Table 1. Parameterization of the truss structure, µi ∈ [−1, 1], i = 1, . . . , 6. All attributes are dimensionless.

The total time is set to T = 20. At each time step, a system of nonlinear equations arises due to the use
of the midpoint rule, which is implicit. To solve these systems, Newton’s method is applied. Each linearized
system is solved directly using the Cholesky factorization (the Jacobian of the residual is symmetric), and
convergence is declared when the residual is less than or equal to 10−5δ, where δ is the maximum of 1.0 and
the norm of the state at the previous time step. A time-step size of ∆t = 1/3 is employed; this value was
determined by a convergence study on the nominal configuration defined by µi = 0, i = 1, . . . 6.

To construct the reduced-order models, we collect snapshots of the required quantities for µ ∈ Dsample and
t ∈ [0,Tsample], where Tsample = 10. The basis Φ is determined via POD. Snapshots {q

(
t+ n∆t+ ∆t

2 ;µ
)
−

q (0;µ) | µ ∈ Dsample, n = 1, . . . , nt}, where nt denotes the total number of time steps, are employed as inputs
to Algorithm 1. The experiments compare four reduced-order models: Galerkin projection (Section III.A),
Galerkin projection with collocation (Section III.B.1), Galerkin projection with least-squares reconstruction
(Section III.B.2), and the proposed efficient, structure-preserving method (Section IV). The same sampling
matrix Z is used for the all sampling-based models; it is determined using the GNAT model-reduction
method’s approach for selecting the sample matrix.11 The sample elements are defined such that E =

{(im, jm) | im, jm ∈ {i1, . . . , inZ
}}, where Z =

[
ei1 · · · einZ

]T
.
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In practice, we found the constraints to always be inactive at the unconstrained solution to (43); therefore,
this problem reduces to a linear least-squares problem. To solve optimization problem (32), we use the
Poblano toolbox;17 the initial guess for Ψ is chosen as ZTZΦ.

The output of interest is the downward tip displacement (denoted by d) for all time steps. To quantify
the error in solutions generated by reduced-order models, the following metrics are used:

e1
HFM =

1
nt

nt∑
n=0
|dn − dnHFM|

max
n

dnHFM −min
n
dnHFM

(37)

e1
Gal =

1
nt

nt∑
n=0
|dn − dnGal|

max
n

dnGal −min
n
dnGal

(38)

e∞HFM =
max
n
|dn − dnHFM|

max
n

dnHFM −min
n
dnHFM

. (39)

e∞Gal =
max
n
|dn − dnGal|

max
n

dnGal −min
n
dnGal

. (40)

Here, a subscript ‘HFM’ denotes a quantity computed using the high-fidelity model, and a subscript ‘Gal’
denotes a quantity computed with the Galerkin-projection-based reduced-order model (with no complexity-
reduction technique).

V.A. Fixed parameters

We first consider the case of a single training point with online parameters equivalent to the training parme-
ters: Dsample = µ1 and µ? = µ1. The parameters are randomly drawn from a uniform distribution on [−1, 1]
as

µ1 = (−0.685, 0.941, 0.914,−0.029, 0.601, 0.502) .

The dimension of the reduced configuration space is selected using an energy criterion. In particular, n =
ne(0.99) = 10 is computed by

ne(ν) ≡ arg min
i∈V(ν)

i (41)

V(ν) ≡ {n ∈ {1, . . . , nw} |
n∑
i=1

σ2
i /

nw∑
i=1

≥ ν}. (42)

For the Galerkin projection with least-squares reconstruction method (Section III.B.2), we treat the entire
residual as the nonlinear function and set nf = n = 10.

The number of rows nZ in the sample matrix is chosen experimentally to be 30.d Convergence in the
solution of (32) is declared when the iterations satisfy a gradient-norm stopping tolerance or relative-function
value-change stopping tolerance17 of 10−5. Figure 2 and Table 2 report the results for this problem.

Galerkin
Galerkin + Galerkin + structure-

collocation LS recon. preserving

e1
HFM 6.20% 14.6% 14.1% 4.38%

e1
Gal - 10.4% 10.4% 5.53%

e∞HFM 26.6% 62.9% 65.8% 12.4%

e∞Gal - 73.7% 76.4% 18.6%

speedup 0.38 1.85 1.90 1.88

Table 2. Performance of reduced-order models for fixed parameters

dThis leads to an aspect ratio of the least-squares matrix of 3.0 for the GNAT method,11 which has been shown to lead to
good results.
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Figure 2. Responses generated by all models for a fixed set of parameters

For this example, the benefits of structure preservation are clear. Both methods that preserve Lagrangian
structure—Galerkin projection and the proposed approach—lead to reasonably accurate, stable responses.
This can be associated with the fact that the discrete solution behaves as a Lagrangian system (i.e., symplectic
flow) when both the model and numerical-integration method (e.g., midpoint rule) preserve properties asso-
ciated with Lagrangian structure. In partucular, note that the approximations introduced by the proposed
structure-preserving method introduce very little error to the Galerkin-projection reduced-order model: the
proposed method generates a response that differs from the Galerkin-projection solution by less than 3%
(e1

Gal = 0.91%). The other reduced-order models (which destroy Lagrangian structure) lead to inaccurate
responses.

Further, note that Galerkin projection alone is insufficient to generate speedups; in fact, a speedup of
0.38 < 1.0 indicates that this reduced-order model takes a longer time to simulate than the high-fidelity
model. This can be attributed to the computational bottleneck discussed in Section III.A.1. On the other
hand, the proposed method achieves a speedup of 1.88 > 1; for larger problems, we expect this speedup
to be significantly larger. Thus, the proposed technique is the only method tested that leads to reasonable
errors (e1

HFM < 10%) and decreased simulation times.

V.B. Variable parameters

This study employs three training points Dsample = {µi, i = 1, . . . , 3} and an ‘online’ point µ? 6∈ Dsample.
The points were randomly computed as

µ1 = (−0.685, 0.941, 0.914,−0.029, 0.601, 0.502)

µ2 = (−0.633,−0.277, 0.778, 0.523,−0.928, 0.466)

µ3 = (−0.567, 0.603, 0.0989, 0.558,−0.517, 0.249)

µ? = (−0.716,−0.156, 0.831, 0.584, 0.919, 0.468) .

Again, an energy criterion is used to determine the dimension of the reduced configuration space as n =
ne(0.99) = 18. The number of sample indices is set to 31. Once more, the Galerkin projection with least-
squares reconstruction treats the entire residual as the nonlinear function and employs nf = n = 10.

Figure 3 and Table 3 report the results for this problem. Again, note that methods that do not preserve
structure lead to poor responses. This is particularly pronounced with the least-squares-reconstruction
approach; here, the response becomes unstable almost immediately.
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Figure 3. Responses generated by all models for a multiple sets of training parameters in a predictive scenario

Galerkin
Galerkin + Galerkin + structure-

collocation LS recon. preserving

e1
HFM 6.85% 18.7% 690% 7.0%

e1
Gal - 16.2% 679% 2.6%

e∞HFM 17.4% 60.7% 2324% 20.5%

e∞Gal - 70.7% 2299% 5.7%

speedup 0.41 1.77 2.06 1.82

Table 3. Performance of reduced order models for multiple parameters (predictive scenario)

In contrast, both methods that preserve Lagrangian structure lead to stable, reasonably accurate re-
sponses (e1

HFM < 10%) for this predictive scenario. Again, we observe that the proposed method’s approx-
imations introduce very little error to the Galerkin-projection reduced-order model, as e1

Gal = 2.6% for the
proposed method.

We again observe that the proposed method is the only model-reduction method that delivers both
accuracy and faster simulation times. This highlights the importance of improving computational efficiency
while preserving Lagrangian structure.

VI. Conclusions

This paper has presented an efficient structure-preserving model-reduction technique for simple me-
chanical systems. The methodology directly approximates the quantities that define the problem’s La-
grangian structure, while ensuring computational efficiency. The method is distinct from typical model-
reduction methods for nonlinear ODEs; these methods are typically based on collocation and empirical
interpolation/least-squares reconstruction techniques that destroy Lagrangian structure.

Future work includes performing a parameter study on the parameters defining the method, applying the
method to a truly large-scale problem, devising methods to select sampling matrix and sample elements, and
deriving error bounds and error estimates that rigorously assess the accuracy of the method’s predictions.
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Appendix

VI.A. Proper orthogonal decomposition

Algorithm 1 describes the method for computing a proper-orthogonal-decomposition (POD) basis given a
set of snapshots. The method essentially amounts to computing the singular value decomposition of the
snapshot matrix. The left singular vectors define the POD basis.

Algorithm 1 Proper-orthogonal-decomposition basis computation

Input: Set of snapshots X ≡ {wi}nw
i=1 with wi ∈ RNw , i = 1, . . . nw and Nw > nw

Output: Φ (n,X )
1: Compute thin singular value decomposition W = V ΣV T , where W ≡

[
w1 · · · wnw

]
2: Choose dimension of truncated basis n ∈ {1, 2, . . . , nw}
3: Φ(n,W ) = W

[
1
σ1
v1 . . . 1

σn
vn
]
, where V =

[
v1 · · · vnw

]
and Σ ≡ diag(σ1, . . . , σnw)

VI.B. Solving the constrained gappy-data-reconstruction optimization problem

This approach reformulates the constraints of (30) in terms of eigenvalues of the reduced matrix: That is,
problem (30) is reformulated as

minimize
x

ne∑
m=1

(
Aim,jm −

nA∑
k=1

Akim,jmxk

)2

subject to λ̃j(x) ≥ ε, j = 1, . . . , n,

(43)

Here, λ̃j(x), j = 1, . . . , n are the eigenvalues of
nA∑
k=1

ΦTAkΦxk. These problems can be solved using any

gradient-based approach.
The gradient of the quadratic objective function is obvious. The gradient of the constraint can be derived

by assuming distinct eigenvalues:

∂λ̃j
∂xi

= ỹTj

∂

(
nA∑
k=1

ΦTAkΦxk

)
∂xi

ỹj (44)

= ỹTj
(
ΦTAiΦ

)
ỹj . (45)

Here, ỹj is the eigenvector associated with eigenvale λ̃j . This indicates that computing the gradient
∂λ̃j

∂ξi is
inexpensive and requires the following steps:

1. Compute the eigenvector ỹj ∈ Rn of the matrix
nA∑
k=1

ΦTAkΦxk.

2. Compute the low-dimensional matrix–vector product w =
(
ΦTAiΦ

)
ỹj .

3. Compute the low-dimensional vector–vector product ỹTj w.

We propose using the unconstrained solution to (43) as the initial guess. In practice, this solution is
often feasible, so it is typically unnecessary to handle the constraints directly.
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